LOAN AMORTISATION ALGORITHM TYPES, AMORTISATION CHARACTERISTICS AND THEIR FINANCIAL IMPLICATIONS

Levente Kovács

In the banking sector, equal loan repayments have been calculated in the same way for centuries, while the nature of the currency in which loans are provided has fundamentally changed. Previously gold standard currencies were used, and when determining the interest rate used in the calculations, no provision was made for the depreciation of money. In this paper, we show how the amortisation method that emerged in the age of gold standard currencies needs to be redefined, due to the risk of modern currencies depreciating with inflation. The new methods should not magnify the impacts of potential changes in interest rates, and should give rise to amortisation characteristics that are more in line with the life cycle in the case of consumer loans, and business activity in the case of corporate loans.

JEL codes: E43, G21, G32

Keywords: loan repayments, amortisation algorithms, amortisation characteristics

1. INTRODUCING

With regard to long-term loans, we set out to resolve two tasks: making the repayments more even, and reducing the impact of interest rate change on the repayments. The generally applied solution for the former is to determine nominal repayments of equal amounts. In the case of long maturities, however, this has yielded no optimal solution for reducing the risk of changes in the repayment due to interest rate variation. This is because, where the annuity-based methodology is used, interest rate changes are reflected exponentially in the repayment (see: Table 1). With respect to the full term of up to several decades in the case of mortgage loans, no such solution has emerged due to the absence of liquid moneymarket hedging instruments suitable for fixing the interest rate, and due to the extra costs of interest rate fixing.

Table 1:
Interest rate dependency of annuity loan repayments

Interest (R)	Repayment	Increase	Increase
3%	HUF 55 460		
4%	HUF 60 598	HUF 5 138	8.48%
5%	HUF 65 996	HUF 5 398	8.18%
6%	HUF 71 643	HUF 5 648	7.88%
7%	HUF 77 530	HUF 5 887	7.59%
8%	HUF 83 644	HUF 6 114	7.31%
9%	HUF 89 973	HUF 6 329	7.03%
10%	HUF 96502	HUF 6 530	6.77%

Note: amount borrowed: HUF 10000 000, term: 240 months Source: by author

Recently, where mortgage loans are concerned, the two solutions have been combined on the basis of consumer protection considerations, with interest fixed - as permitted by opportunities in the money market - for several-year cycles (MNB, 2018). This combination is potentially very successful if the beginnings of the interest periods happen to fall at times of "good" low interest rates and expectations of only moderate interest rate changes. The risk, however, is that if the beginning of an interest period falls at a time of very "bad" high interest rates and/or the expectation of a substantial rise in interest, then the increase in the repayments (potentially) causes a shock. The optimal structures described in the following sections aim to correct these typical flaws.

2. PROBLEMS ASSOCIATED WITH ANNUITY LOANS

A popular purpose of financial calculations is determining the annuity-based, fixed-amount repayments on loans. University textbooks usually derive this from the annuity, to arrive at the following result (for consistency with later sections, r is the reference interest rate, m the interest margin of the loan, and let $R=r+m$, while n is the number or repayments, often expressed in time units):

Repayment $=\frac{\text { Amount borrowed }}{\frac{1}{R}-\frac{1}{R(1+R)^{n}}}$

We prefer not to work with this formula on paper, and indeed there is no need to do so, as financial calculators and computers are preprogrammed with its al-
gorithm. In the past, the interest/term (AF: r, n) pairs were shown in what were known as annuity tables in the textbooks and specialist literature.

The result in (1) can be reached via a shorter route as follows:

- The amount borrowed is precisely equal to the present value of the repayments $\left(X_{i}\right)$ discounted by $R=r+m$, that is
Amount borrowed $=\sum_{i=1}^{n} \frac{X_{i}}{(1+R)^{i}}$.
- For annuity repayment, the repayments are expected to be equal, so $X_{i}=X_{j}=X$.
- Form and sum formula of the general geometric sequence

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}=a_{1} \sum_{i=1}^{n} q^{i-1}=\mathrm{a}_{1} \times \frac{q^{n}-1}{q-1} \tag{4}
\end{equation*}
$$

- X can be isolated from formula (2) because of its equivalence with (3) and furthermore, in this case, based on the $a_{1}=q=\frac{1}{1+R}$ relationships:
Amount borrowed $=X \times \frac{1}{1+R} \times \frac{\left(\frac{1}{1+R}\right)^{n}-1}{\frac{1}{1+R}-1}$,
of which:
$X=\frac{\text { Amount borrowed } \times(1+R) \times\left(\frac{1}{1+R}-1\right)}{\left(\frac{1}{1+R}\right)^{n}-1}=\frac{- \text { Amount borrowed } \times R}{\left(\frac{1}{1+R}\right)^{n}-1}$
- The equivalence of formulas (1) and (6) can be shown with the following rearrangement:
$\frac{1}{\frac{1}{R}-\frac{1}{R(1+R)^{n}}}=\frac{-R}{\left(\frac{1}{1+R}\right)^{n}-1}$.
- With both sides rearranged:
$\frac{1}{\frac{1}{R} \times\left(1-\frac{1}{(1+R)^{n}}\right)}=\frac{R}{-\frac{1}{(1+R)^{n}}+1}$.
- Dividing by the fractionon $\frac{1}{R}$ the left hand side is equivalent to multiplying by R on the right as the reciprocal, and thus the two numerators and the two denominators are the same, so the two sides are equal.

This confirms the equivalence of formulas (1) and (6). This proof was not gratuitous, as it prepares the ground for the later derivations and harmonisation with the results.

The nominal and net present values (NPV) of classic annuity repayments, discounted by r, are shown in Figure 1 in the context of a specific example. The interest rates here, and in what follows, are shown on a p. a. (per annum) basis, and the amount borrowed is denoted by H.

Figure 1
Nominal and present value of repayments on a classic annuity loan

Note: $H=$ HUF 10 ooo ooo, $R=r+m, r=3 \%, m=4 \%, n=240$ months
Source: by author

As the chart shows, the "price" of having nominally equal repayments is that the initial repayment is relatively high; then as time passes, the monthly repayment burden depreciates with inflation. For mortgage loans, this runs counter to the consumer life cycle, as it overburdens young home buyers in the years following the home purchase; then later, when salaries are likely to stabilise or increase, the repayment burden becomes negligible. The situation is similar for investment loans, as the new investment causes the company's income-generating capacity to increase as time progresses, while the loan burden decreases contrary to this. In other words, here the borrower is overburdened during the initial period, and under-burdened in the closing period.

Due to the lender's risks, we should also look at the value and present value of the outstanding principal debt during the term. Remaining with the previous example, this is shown in chart 2.

Figure 2
Change in nominal and present value
of the outstanding principal of a classic annuity loan

Note: $H=$ HUF 10 ooo ooo, $r=3 \%, m=4 \%, n=240$ months
Source: by author

As expected, the outstanding principal - due to the initial overburdening - decreases rapidly.

The impact of the interest rate change on the repayment has already been shown in Table 1, so now we will also give it as a function; that is, the total derivative function of (1) with respect to R.
$X^{\prime}(R)=-$ Amount borrowed $\frac{\frac{-1}{R^{2}}+\frac{1}{R^{2}\left(1+R n^{n}\right.}+\frac{n}{R(1+R)^{n+1}}}{\left(\frac{1}{R}-\frac{1}{R(1+R)^{n}}\right)^{n}}$

As demonstrated in Table 1, and also observed in the derived function, the effect of the 1 percentage point interest rate increase on the amount of the repayment is exponential, at several times the interest rate increase given a normal level of interest rates.

These problems did not occur in the age of gold standard currencies, because then the repayment burden was the same throughout the term, e.g. 6 pieces of the same gold coin, or banknotes redeemable for gold, every month.

3. OPTIMAL MORTGAGE LOANS WITH A CONSTANT PRESENT VALUE

A prerequisite for the widespread uptake of mortgages is that the reference interest rate should be relatively low (based on general experience, below 10%, because above this the starting monthly repayment is unaffordable for society as a whole), and if possible, interest rates should not be volatile.
This is why, in the past, mortgage loans based on an intermediary currency (e.g. Swiss franc, US dollar) became widespread in several Central and Eastern European and South American countries. With these, the initial repayments were much lower, and the expected amortisation characteristics - being almost constant in terms of their present value - were more in line with the consumer life cycle. Due to the economic crisis, however, a dramatic deterioration in the exchange rates of precisely these currencies, and in the USA the introduction of the right to walk away - as the root cause of the collapse of the mortgage market - decimated the mortgage market. Regarding the change in exchange rates, a practical and theoretical comparison of FCY and HUF-based loan burdens has been performed (Király-Simonovits, 2015). However, due to the extreme market impacts and lack of an optimal intermediary currency, it is impossible to build a stable mortgage market on this solution. It should also be mentioned that, aiming for the optimal amortisation characteristics, it would also have been possible to introduce a satisfactory amortisation formula - through the mathematical and optimal mirroring of FCY-based loans - based on the countries' own national currencies. This was recently defined successfully (Kovács-Pásztor, 2018). In it, the repayments were determined by formula (8).
$X_{i}=\frac{\text { Amount borrowed } \times\left(\frac{1+r+m}{1+m}\right)^{i}}{\frac{1}{m}-\frac{1}{m(1+m)^{n}}}$
The derivation and significance of the formula is presented in the cited study.
We can find the optimal mortgage amortisation process, where it is not the nominal, but the present value of the repayments that is constant, based on the analogue of the derivation encountered at the beginning of the previous section (Ko-vács-Pásztor, 2018):

- The amount borrowed is precisely equal to the present value of the repayments $\left(X_{i}\right)$ discounted by $r+m$, that is

$$
\begin{equation*}
\text { Amount borrowed }=\sum_{i=1}^{n} \frac{X_{i}}{(1+r+m)^{i}} . \tag{9}
\end{equation*}
$$

- The equality of the repayments discounted by r is given by the following relationship:

$$
\begin{equation*}
X_{i}=X_{0} \times(1+r)^{i} \tag{10}
\end{equation*}
$$

where X_{o} is the present value of the repayment calculated for the time of borrowing, substituted into the previous formula:

Amount borrowed $=\sum_{i=1}^{n} \frac{X_{0}(1+r)^{i}}{(1+r+m)^{i}}$.

- Form and sum formula of the general geometric sequence

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}=a_{1} \sum_{i=1}^{n} q^{i-1}=a_{1} \times \frac{q^{n}-1}{q-1}, \tag{12}
\end{equation*}
$$

in formula (11), $q=a_{1}=\frac{1+r}{1+r+m}$ based on these relationships and following the isolation of X 。
Amount borrowed $=X_{0} \times{ }_{1+r+m}^{1+r} \times \frac{\left(\frac{1+r}{1+r+m}\right)^{n}-1}{\frac{1+r}{1+r+m}-1}$.

From this, after the restoration of X_{i} from formula (10) following by simplifications, expressing the i-th repayment:

$$
X_{i}=\frac{\text { Amountborrowed } \times(1+r)^{i}}{\frac{1+r}{1+r+m} \times \frac{\left(\frac{1+r}{1+r+m}\right)^{n}-1}{\frac{1+r}{1+r+m}-1}}=\frac{- \text { Amount borrowed } \times m \times(1+r)^{i-1}}{\left(\frac{1+r}{1+r+m}\right)^{n}-1}
$$

In other words, with this optimal repayment determination, the present value of every repayment will be the same. Remaining with the same example, the amortisation characteristics, that is, the nominal and present value of the repayments, are shown in Figure 3.

Figure 3
Nominal and present value of optimal mortgage loan repayments

Note: $H=$ HUF 10 ooo ooo, $r=3 \%, m=4 \%, n=240$ months
Source: by author
The significance of this result is that the repayment burden of the mortgage loan, provided that the borrower's income is constant in value (e.g. if it continuously rises with the reference interest rate), will remain constant. In other words, it will not be an excessive burden in the initial period (remaining with the same example, HUF 61000 instead of HUF 78 ooo), although the repayments will not depreciate with inflation during the closing period. For example, if someone makes a living panning for gold (by which I mean any occupation providing a stable income!), then if they have to pan for one week every month to meet the monthly repayment, then they would have to do it for precisely one week every month throughout the full term of the loan. The interesting theoretical implication of this new approach - which makes sense given narrow limits on changes in income - is that when the amount of the repayment at any given time is linked to prevailing income, changes in tenor are applied instead (Berlinger-Walter, 2013).

Another result of the formula is that it means mortgage lending could also be introduced/applied in countries struggling with high interest rates - e.g. those that formerly resorted to the aforementioned foreign-currency mortgage loans in such a way that the repayments remain affordable throughout the full term of the loan. The initial monthly repayments, e.g. with a 20 -year term and 4% interest margin, amount to 0.6% of the amount borrowed, regardless of the reference interest rate.

The change in the level of interest is reflected as a fixed sum in the amount of the repayment in the specific example (see Table 2).

Table 2
Interest rate dependency of the first monthly repayment on the optimal mortgage loan

Reference interest rate	$\mathbf{1}^{\text {st }}$ repayment	Increase (HUF)	Increase (\%)
1%	HUF 60631		
2%	HUF 60664	HUF 32.94	0.0543%
3%	HUF 60697	HUF 32.94	0.0543%
4%	HUF 60730	HUF 32.94	0.0543%
5%	HUF 60763	HUF 32.95	0.0543%
6%	HUF 60796	HUF 32.95	0.0542%
7%	HUF 60829	HUF 32.95	0.0542%
8%	HUF 60862	HUF 32.96	0.0542%
9%	HUF 60895	HUF 32.96	0.0542%
10%	HUF 60928	HUF 32.96	0.0541%

Note: $H=$ HUF 10 ooo 000, $m=4 \%, n=240$ months
Source: by author

In other words, with this method, the risk of a change in the interest rate is reflected in a very moderate value increase, which is a complex function of the variables. This function - given the interest rates and terms typical of Hungary - can be approached very well using a linear function. The total derivative of formula (14) with respect to "r" also shows this:
$X_{i}{ }^{\prime}(r)=\frac{H m(1+r)^{i-2}\left[(1-i)(1+r+m)\left(\left(\frac{1+r}{1+r+m}\right)^{n}-1\right)+n m\left(\frac{1+r}{1+r+m}\right)^{n}\right]}{(1+r+m)\left(\left(\frac{1+r}{1+r+m}\right)^{n}-1\right)^{2}}$

An examination of the outstanding principal cannot be omitted here either. Remaining with the specific example, the nominal and present value of the outstanding principal is shown in Figure 4.

Figure 4
Change in nominal and present value of optimal mortgage loan principal

Note: $H=$ HUF 10 ooo ooo, $r=3 \%, m=4 \%, n=240$ months
Source: by author

In other words, the decrease in principal takes place slower than in the case of a classic annuity loan.

4. OPTIMAL INVESTMENT LOAN WITH RISING PRESENT VALUE

Investment loans are also typically long-term facilities, granted by banks to functioning and fundamentally creditworthy companies. Accordingly, for repayment of the loan, the credit institutions not only take into account, and use, the expected income from the new investment, but also the income from other activities of a company that is already trading. An item of trivia evidencing this is that during the grace period following disbursement of the investment loans, when the investment is being implemented and the new unit is not yet generating revenue, credit institutions still request interest payments, at the least. The funds for this can only come from other revenues, or from the investment loan itself.
The first revenues generated by the new investments only start to come in after completion of the investment, and typically increase over time. In other words, the natural requirement for an investment would be a total repayment moratorium (relating to both principal and interest), and after implementation of the investment a steady increase, e.g. by z, in the present value of the repayments. This formula is determined in a similar way to the previous derivation:

- The amount borrowed is precisely equal to the present value of the repayments $\left(X_{i}\right)$ discounted by $r+m$, that is

$$
\begin{equation*}
\text { Amount borrowed }=\sum_{i=1}^{n} \frac{X_{i}}{(1+r+m)^{i}} \tag{16}
\end{equation*}
$$

- The equality of the repayments discounted by $r+z$ is given by the following relationship:

$$
\begin{equation*}
X_{i}=X_{0} \times(1+r+z)^{i} \tag{17}
\end{equation*}
$$

where X_{o} is the present value of the repayment calculated for the time of borrowing, substituted into the previous formula:

$$
\begin{equation*}
\text { Amount borrowed }=\sum_{i=1}^{n} \frac{X_{0} \times(1+r+z)^{i}}{(1+r+m)^{i}} \tag{18}
\end{equation*}
$$

- Form and sum formula of the general geometric sequence

$$
\begin{equation*}
S_{n}=a_{1} \sum_{i=1}^{n} q^{i-1}=a_{1} \times \frac{q^{n}-1}{q-1} \tag{19}
\end{equation*}
$$

in formula (18) $q=a_{1}=\frac{1+r+z}{1+r+m}$ according to these relationships:
Amount borrowed $=X_{0} \times \frac{1+r+z}{1+r+m} \times \frac{\left(\frac{1+r+z}{1+r+m}\right)^{n}-1}{\frac{1+r+z}{1+r+m}-1}$.
From this, after the restoration of X_{i} from formula (17) followed by simplifications, expressing the i-th repayment:

$$
\begin{equation*}
X_{i}=\frac{\text { Amount borrowed } \times(1+r+z)^{i}}{\frac{1+r+z}{1+r+m} \times \frac{\left(\frac{1+r+z}{1+r+m}\right)^{n}-1}{\frac{1+r+z}{1+r+m}-1}}=\frac{\text { Amount borrowed } \times(z-m)(1+r+z)^{i-1}}{\left(\frac{1+r+z}{1+r+m}\right)^{n}-1} . \tag{21}
\end{equation*}
$$

The nominal and present values of the repayments are shown in Figure 5, given a 2% increase in the repayments.

Figure 5
Nominal and present value of optimal investment loan repayments

Note: $H=$ HUF 10 ooo 000, $r=3 \%, m=4 \%, z=2 \%, n=240$ months
Source: by author

In other words, there is a clearly definable investment loan amortisation formula in which the repayments increase as a function of the increase in the r reference interest, m interest margin and z income. The X_{o} base repayment does not depend on the reference interest rate! This makes it possible to promote economic development with bank loans provided in the national currency, even in countries struggling with high interest rates.

The dependency of the value of the repayment on changes in the reference interest rate is constant like that of the optimal mortgage loan, due to its similar formula (see Table 3).

Table 3
Interest rate dependency of the first monthly repayment on the optimal investment loan

Reference interest rate	repayment	Increase (HUF)	Increase (\%)
1%	HUF 50 691		
2%	HUF 50725	HUF 34.266	0.0676%
3%	HUF 50760	HUF 34.267	0.0676%
4%	HUF 50794	HUF 34.268	0.0675%
5%	HUF 50 828	HUF 34.269	0.0675%
6%	HUF 50862	HUF 34.269	0.0674%
7%	HUF 50 897	HUF 34.270	0.0674%
8%	HUF 50 931	HUF 34.271	0.0673%
9%	HUF 50 965	HUF 34.272	0.0673%
10%	HUF 51 000	HUF 34.272	0.0672%

Note: $H=$ HUF 10 ooo 000, $r=3 \%, m=4 \%, z=2 \%, n=240$ months
Source: by author

The total derived function of formula (21) with respect to r :
$X_{i}^{\prime}(r)=\frac{H(m-z)(1+r+z)^{i-2}\left[(1-i)(1+r+m)\left(\left(\frac{1+r+z}{1+r+m}\right)^{n}-1\right)+n(m-z)\left(\frac{1+r+z}{1+r+m}\right)^{n}\right]}{(1+r+m)\left(\left(\frac{1+r+z}{1+r+m}\right)^{n}-1\right)^{2}}$.

As Table 3 also shows, the derived function can be approached well with the linear curve, given the usual level of the reference interest rate.

The nominal and present values of the outstanding principal are shown in Figure 6.

Figure 6
Change in nominal and net present value of optimal investment loan principal

Note: $H=$ HUF 10 ooo 000, $r=3 \%, m=4 \%, z=2 \%, n=240$ months
Source: by author

It is clear that the decrease in principal takes place more slowly than before. The repayment burdens, however, only become greater when the upturn in revenues is also taking place. The "price" of this is that the decrease in outstanding principal - possibly following a temporary increase - is concentrated in the closing phase.

A clear advantage of the new, optimal method is that the amortisation characteristics are much more closely aligned with the projected income from the new investments, and the dependency of repayments on the reference interest rate and reference interest rate changes is low. These characteristics can facilitate globally predictable and continuous economic growth given the appropriate activity on the part of credit institutions.

5. POTENTIAL SOCIAL-POLICY IMPLICATIONS

It is worth weighing up the pros and cons of loan facilities amortised using the optimal formula. Their advantage is that they make it possible to determine a payment burden that is either constant throughout the term, or aligned with projected revenue growth. If the interest rate is fixed until maturity, then the regular
repayment obligation can also be determined in advance for the full term. If the loan is provided on a variable-interest basis, then the mid-term changes in interest are reflected in the repayments in a way that is effectively linear and matches the extent of the change in interest.
It could be seen as a disadvantage that, unlike the facilities we have been accustomed to, the repayments do not depreciate with inflation. In the case of a variable interest rate, the repayments are only known for a given period (this might be the next repayment, but may also be fixed for several repayment cycles), so the precise extent of the next repayment carries some uncertainty if the reference interest rate will change in the meantime. From the banks' perspective, the duration of the loan receivable is longer, which is a disadvantage if payment discipline is bad, but an advantage in the case of good payment discipline. Moreover, not even the optimal methods are capable of managing the drop in income that results from the loss of a job, the freezing of income levels during an economic crisis, extreme volatility in individual property markets, etc. Here is should be mentioned that, for general purposes, the statutory frameworks for mortgage lending should be aligned with the new structures; for example, it makes no sense to compare today's income with the repayments due in 20 years' time.
In summary, the benefits are desirable from a consumer protection standpoint, while the drawbacks are typically less disadvantageous than those of the customary annuity structures.

The study has shown that, irrespectively of the reference interest rate, the initial repayment of a HUF 10 million mortgage loan with a 20 -year term and 4% margin is HUF 60 ooo. Meanwhile, rent is around $0.8-1 \%$ of the property's value. In other words, given a mortgage loan structure that affords sufficient lender protection, even for a property purchase with no upfront payment, the monthly repayment remains less than the rent would be. The latter statement will remain true in the next two decades if property prices, rents and incomes, and thus the repayments, move together (e.g. if they follow inflation). This optimal mortgage structure could also be used globally to resolve the acquisition of property among the Earth's population; because, as we have shown, the cost of acquiring the property remains below that of the alternative, renting. This is the only chance for the poor, aspirational sections of the population to fund their own home acquisition. The use of a maximum 20-year term is also ethical, as it provides a realistic opportunity for the population, given the average time spent in work (40-50 years), to accumulate other wealth in addition to their home. This can be regarded as a financial prerequisite for middle class growth, because if "we don't live to eat", then we should not work just to have somewhere to live either.

6. SUMMARY

A fundamental problem with classic annuity loan repayments is, firstly, that the loan amortisation characteristics are not aligned with the consumer life cycle in the case of consumer mortgage loans, or with a business plan that is founded on growing revenues in the case of investments. Secondly, interest rate levels, and their volatility, are reflected exponentially in the extent and volatility of the repayments. These problematic factors are eliminated by the optimal loan amortisation formulae (as a comparison of the tables in the Appendixes shows!)

The formula for the i-th repayment of the optimal mortgage loan (r - reference interest rate, m - interest margin, n - number of repayments, H amount borrowed): $X_{i}=\frac{-H m(1+r)^{i-1}}{\left(\frac{1+r}{1+r+m}\right)^{n}-1}$

The formula of the i-th repayment of the optimal investment loan $(r$ - reference interest rate, m - interest margin, z - increase in repayment, n - number of repayments, H amount borrowed):
$X_{i}=\frac{H(z-m)(1+r+z)^{i-1}}{\left(\frac{1+r+z}{1+r+m}\right)^{n}-1}$
By introducing the new, optimal structure, credit institutions can enter new markets (those struggling with high interest rates). It is sufficient to provide the funds in the national currency; the use of a variable interest rate does not require costly long-term, fixed-interest funds, so overall the loans can be covered relatively cheaply. With the optimal structures, because the repayments are fixed at present value, the duration of the loan portfolios increases; in other words, their existing liquidity can be placed for a longer period on average.
We arrived at the optimal loan amortisation formulas with novel and spectacular mathematical derivations. For customers, use of the optimal structures results in lower initial repayments, but the constancy of the present value of the repayments, and their pre-planned nominal increase, is aligned with the natural consumer need associated with retail mortgage and corporate investment loans. The price of this is that the repayments change constantly (e.g. monthly, quarterly or every six months), which necessitates some IT development on the part of the banks, and more care on the part of customers.
In the case of the optimal loan amortisation formulas, the impact on repayments of the rate and volatility of interest is moderate and almost linear.

For consumers, the optimal loan structures provide a genuine and strong alternative to renting, so globally their use can be used to help resolve humanity's housing issues, while in the corporate sphere the alignment of loan amortisation characteristics with the projected revenue from new investments offers new solutions for sustainable economic growth based on the provision of credit.

APPENDIX

1/A. Amortisation schedule

Classic annuity loan

Amount borrowed	Term (years)Reference interest rate	Interest margin	
10000000	20	3%	4%
	One repayment per annum!		

Year	Annual repayment	NPV Annual repayment	Interest	Principal	Principal remaining	NPVPrincipal remaining
1	943929	916436	700000	243929	9756071	9471913
2	943929	889744	682925	261004	9495066	8950011
3	943929	863829	664655	279275	9215792	8433755
4	943929	838669	645105	298824	8916968	7922611
5	943929	814242	624188	319741	8597227	7416043
6	943929	790526	601806	342123	8255103	6913519
7	943929	767501	577857	366072	7889031	6414504
8	943929	745146	552232	391697	7497334	5918465
9	943929	723443	524813	419116	7078218	5424865
10	943929	702372	495475	448454	6629764	4933167
11	943929	681915	464083	479846	6149918	4442832
12	943929	662053	430494	513435	5636483	3953316
13	943929	642770	394554	549375	5087108	3464073
14	943929	624048	356098	587832	4499276	2974552
15	943929	605872	314949	628980	3870296	2484196
16	943929	588226	270921	673009	3197288	1992444
17	943929	571093	223810	720119	2477169	1498728
18	943929	554459	173402	770527	1706641	1002472
19	943929	538310	119465	824464	882177	503093
20	943929	522631	61752	882177	0	0

1/B. Amortisation schedule

Optimal mortgage loan

Amount borrowed	Term (years)	Reference interest rate	Interest margin
10000000	20	3%	4%
	One repayment per annum!		

Year	Annual repayment	NPV Annual repayment	Interest	Principal	Principal remaining	NPV Principal remaining
1	750094	728247	700000	50094	9949906	9660103
2	772597	728247	696493	76103	9873803	9307006
3	795775	728247	691166	104608	9769194	8940197
4	819648	728247	683844	135804	9633390	8559142
5	844237	728247	674337	169900	9463490	8163289
6	869564	728247	662444	207120	9256370	7752064
7	895651	728247	647946	247706	9008664	7324868
8	922521	728247	630606	291914	8716750	6881083
9	950197	728247	610172	340024	8376726	6420063
10	978702	728247	586371	392332	7984394	5941139
11	1008064	728247	558908	449156	7535238	5443616
12	1038305	728247	527467	510839	7024399	4926772
13	1069455	728247	491708	577747	6446653	4389857
14	1101538	728247	451266	650273	5796380	3832090
15	1134584	728247	405747	728838	5067542	3252663
16	1168622	728247	354728	813894	4253648	2650733
17	1203681	728247	297755	905925	3347723	2025427
18	1239791	728247	234341	1005450	2342273	1375838
19	1276985	728247	163959	1113026	1229247	701022
20	1315294	728247	86047	1229247	0	0

1/C. Amortisation schedule

Optimal investment loan

Amount borrowed	Term (years)	Reference interest rate	Interest margin
$\mathbf{1 0 0 0 0 0 0 0}$	20	3%	4%

Year	Annual repayment	NPV Annual repayment	Interest	Principal	Principal remaining	NPV Principal remaining
1	636259	617727	700000	-63741	10063741	9770622
2	668072	629722	704462	-36 390	10100131	9520342
3	701475	641949	707009	- 5534	10105665	9248115
4	736549	654414	707397	29153	10076512	8952851
5	773377	667122	705356	68021	10008491	8633413
6	812045	680075	700594	111451	9897040	8288615
7	852648	693281	692793	159855	9737185	7917223
8	895280	706742	681603	213677	9523508	7517945
9	940044	720466	666646	273399	9250110	7089439
10	987046	734455	647508	339539	8910571	6630302
11	1036399	748716	623740	412659	8497912	6139073
12	1088219	763255	594854	493365	8004547	5614229
13	1142630	778075	560318	582311	7422236	5054182
14	1199761	793183	519557	680205	6742032	4457277
15	1259749	808585	471942	787807	5954225	3821790
16	1322737	824286	416796	905941	5048284	3145924
17	1388873	840291	353380	1035493	4012790	2427804
18	1458317	856608	280895	1177422	2835369	1665480
19	1531233	873241	198476	1332757	1502612	856918
20	1607795	890197	105183	1502612	0	0

REFERENCES

Berlinger, Edina - Walter, György (2013): Unorthodox proposal for the settlement of FCY and HUF-based mortgage loans [Unortodox javaslat a deviza- és forintalapú jelzáloghitelek rendezésére], Hitelintézeti Szemle 2013/6.
Király, Júlia - Simonovits, András (2015): Mortgage loan amortisation in HUF and FCY - simple models [Jelzáloghitel-törlesztés forintban és devizában - egyszerű modellek], Közgazdasági Szemle, January 2015
Kovács, Levente - Pásztor, Szabolcs (2018): State of the global mortgage market and possible scenarios for the advancement of home ownership [A globális jelzálogpiac helyzete és a lakástulajdonlás előmozdításának lehetséges forgatókönyvei], manuscript.
MNB (2018): Terms of Certified Consumer-Friendly Home Loans [Minősített Fogyasztóbarát Lakáshitel feltételei], https://www.minositetthitel.hu/.

